Bilangan pokok a > 0 ¹ 1 Tanda pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya
a > 1 0 < a < 1
a log f(x) > b ® f(x) > ab
a log f(x) < b ® f(x) < ab
(tanda tetap)
a log f(x) > b ® f(x) < ab
a log f(x) < b ® f(x) > ab
(tanda berubah)
syarat f(x) > 0
Contoh:
Tentukan batas-batas nilai x yang memenuhi persamaan
²log(x² - 2x) < 3
a = 2 (a>1) ® Hilangkan log ® Tanda tetap
- 2 < x < 0 atau 2 < x < 4
x² - 2x < 2³
x² - 2x -8 < 0
(x-4)(x+2) < 0
-2 < x < 4
syarat : x² - 2 > 0
x(x-2) > 0
x < 0 atau x > 2
1/2log (x² - 3) < 0
a = 1/2 (0 < a < 1) ® Hilangkan log ® Tanda berubah
x < - 2 atau x > 2
(x² - 3) > (1/2)0
x² - 4 > 0
(x -2)(x + 2) < 0
x < -2 atau x > 2
syarat : x² - 3 > 0
(x - Ö3)(x + Ö3) > 0
x < Ö3 atau x > Ö3
posted by Theraphi Otak Dengan Matematika @ 00:40 0 comments
Barisan dan Deret Geometri
BARISAN GEOMETRI
U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika
U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta
Konstanta ini disebut pembanding / rasio (r)
Rasio r = Un / Un-1
Suku ke-n barisan geometri
a, ar, ar² , .......arn-1
U1, U2, U3,......,Un
Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)
DERET GEOMETRI
a + ar² + ....... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku
Jumlah n suku
Sn = a(rn-1)/r-1 , jika r>1
= a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)
Keterangan:
Rasio antara dua suku yang berurutan adalah tetap
Barisan geometri akan naik, jika untuk setiap n berlaku
Un > Un-1
Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1
Bergantian naik turun, jika r < 0
Berlaku hubungan Un = Sn - Sn-1
Jika banyaknya suku ganjil, maka suku tengah
_______ __________
Ut = Ö U1xUn = Ö U2 X Un-1 dst.
Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar
DERET GEOMETRI TAK BERHINGGA
Deret Geometri tak berhingga adalah penjumlahan dari
U1 + U2 + U3 + ..............................
¥
Ã¥ Un = a + ar + ar² .........................
n=1
dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0
Dengan menggunakan rumus jumlah deret geometri didapat :
Jumlah tak berhingga S¥ = a/(1-r)
Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1
Catatan:
a + ar + ar2 + ar3 + ar4 + .................
Jumlah suku-suku pada kedudukan ganjil
a+ar2 +ar4+ ....... Sganjil = a / (1-r²)
Jumlah suku-suku pada kedudukan genap
a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²
Didapat hubungan : Sgenap / Sganjil = r
PENGGUNAAN
Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)
M0, M1, M2, ............., Mn
M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0
M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0
.
.
.
.
Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0
Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)
M0, M1, M2, .........., Mn
M1 = M0 + P/100 . M0 = (1 + P/100) M0
M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0
= (1 + P/100)² M0
.
.
.
Mn = {1 + P/100}n M0
Keterangan :
M0 = Modal awal
Mn = Modal setelah n periode
p = Persen per periode atau suku bunga
n = Banyaknya periode
Catatan:
Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0).
0 Komentar
Silahkan tinggalkan komentar anda disini
Emoji